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Abstract— In science and engineering research, most observed (experimental) data are fit to mathematical model(s): linear or nonlinear. 

Mostly, the statistical error test – least square method is used to minimize the difference between the experimental and model-predicted 

data to achieve a good fit. In this study, some statistical error functions: average, absolute, mean square, root mean square, Chi-square 

and normalized root mean square were used as error minimization approach to fit experimental (i.e., viscosity and shear rate) data to 

Carreau-Yasuda model using SOLVER. The values of the model’s adjustable parameters obtained from average, absolute and Chi-square 

errors were different while the sum square, mean square, root mean square and normalize root mean square errors resulted in the same 

values. Furthermore, the goodness and acceptability of the fitted model were established using the coefficient of determination (R2) and F-

test (Ftest) value.  From the fitted model R2 results obtained, the average error had 0.9585 while other error functions had R2 of 0.9998. The 

Ftest values obtained showed that the average error had 0.9756; this was greater than its F-critical value of 0.6365, while the sum of 

square errors had 1.0002, which was less than their F-critical value of 1.5709. Hence, the fitted model based on sum of square error 

functions was more fitted and accepted than model fitted with the average error functions. Therefore, sum of square, mean square, root 

mean square and normalize root mean square error functions are good error minimization approach to fit nonlinear models and curves to 

experimental data. 
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——————————      —————————— 

1 INTRODUCTION                                                                     

he model fitting to a set of data is one of the common and 
frequently carried out tasks in many disciplines of science 
and engineering [1]. Generally, it is the process of con-

structing a mathematical function (model) that has the best fit 
to a series of data points, possibly subjected to constraint [2]. 
Thus, the goodness of fit is an essentially important parameter 
that estimates how well the model (i.e., the prediction) pro-
nounces the experimental data. Mostly, the least-squares 
method is used to measure the goodness of fit. This is based 
on the theory that the scale of the difference between the ex-
perimental data points and the model prediction is a good 
measure of how well the model fits the data [3]. Before now, 
nonlinear data would be changed into a linear form and con-
sequently analysed by the least-squares fit approach. This 
analysis could yield inaccurate measurements and predictions 
of the data and may alter the experimental error or alter the 
relationship between the ‘independent’ and ‘dependent’ vari-
ables. Regrettably, this approach of fitting nonlinear data is 
erroneous and old fashioned which should not be applicable. 
For the nonlinear data, it is important to apply a protocol that 
will fit a nonlinear model to the data. With the advent of the 
computer, a suitable method for this protocol (algorithm) is 
called iterative nonlinear least-squares fitting.  

According to Ahn [1], when we are particularly interested 
in fitting a set of measurement points to the nonlinear model, 
the least-squares model fitting with the error measure is called 
model fitting in the literature. The model-fitting problem is a 
nonlinear minimization problem to be solved through itera-
tion and has been widely recognized as an analytically and 
computationally difficult problem. Interestingly, several algo-
rithms had been developed that are used in nonlinear estima-
tion; these include the Gauss-Newton, the Marquardt-

Levenberg, the Nelder-Mead and the steepest descent meth-
ods [4]. Okon et al. [5] added that SOLVER in Microsoft Excel, 
which is based on the robust and reliable generalized reduced 
gradient (GRG) method, can be used as an easy iteration pro-
tocol to perform the nonlinear iteration. Additionally, all the 
algorithms have similar properties; they require input initial 
parameters and use these values to get a better estimation of 
the parameters used in an iterative process. In fitting the mod-
el to experimental data, most of the protocols used the sum of 
square error to minimize the difference between the model-
predicted and experimental data. Interestingly, there are other 
statistical error measurement tools like; average error, abso-
lute error, mean square error (MSE), root-mean-square error 
(RMSE), Chi-square (X2), among others. Therefore, this study 
looks at the effect (i.e., prediction) of using different statistical 
error functions on fitting experimental data to a model or 
curve. 

2    EVALUATION OF STATISTICAL ERROR FUNCTIONS 

2.1 Sample Model and Data Acquisition 

The model used for this evaluation was developed by Car-
reau-Yasuda for the viscosity of a non-Newtonian fluid. This 
model as expanded in Equation 1 has five (5) adjustable pa-
rameters, namely, a , n , , o and inf . The experimental data 
to be fitted to this model (Equation 1) were obtained from the 
study of Morrison [6]; as presented in Table A.1 (Appendix).  

   
1

inf inf 1
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        (1) 

where o is the viscosity at zero shear rate, inf is the viscosity 
at infinite shear rate, denotes the relaxation time,  is the 
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shear rate, eff is the effective viscosity, a  is exponent and n  
is the power index. 

2.2  Model Fitting Procedures 

The different statistical error functions used to fit the ex-
perimental data to the Carreau-Yasuda model (Equation 1) 
using SOLVER in Microsoft Excel are expressed in Equations 2 
through 8. 

i. Average error: 
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ii. Absolute error: 
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iii. Sum of square error: 

 
2

exp. mod

1

N

el

i

SSE  


     (4) 

iv. Mean square error: 
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v. Root mean square error: 
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vi. Chi-square error: 
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vii. Normalized root mean square error: 

   max minexp. exp.

RMSE

RMSE
N

 



   (8) 

where; 

exp. = experimental viscosity 

model = model predicted viscosity. 

         The extracted data from Morrison [6] were entered into 
the Excel spreadsheet in two columns; COLUMN C contained 
the shear rate while COLUMN D contained the viscosity data, 
as shown in Figure 1. The adjustable parameters: 
a , n , , o and inf in the model (Equation 1) were assumed; 
as indicated in COLUMN B in Figure 1, to estimate the effec-
tive viscosity (i.e., ) in COLUMN E. Then, the difference be-
tween the experimental viscosity ( exp. ) and model-predicted 
viscosity ( model ) was evaluated in COLUMN F (Figure 1), 
using the error functions. Again, the summation of the error 

function was estimated in CELL F59, as visible in Figure 2. 
Afterwards, the SOLVER function was activated to minimize 
the summed error function value in CELL $F$59 (i.e., Set Ob-
jective) by changing the adjustable parameters in the model 
(Variable Cells) in COLUMN B (i.e., $B$2:$B$6); as shown in 
Figure 2. Afterwards, the solving method GRG was selected to 
handle the nonlinear minimization (iterative) protocol as the 
Solve icon was clicked to start the SOLVER solving process. 

 
  Fig 1, Microsoft Excel screen shot of the model estimation 

 

 
  Fig 2, Screen shot of the SOLVER menu 
 
         The values obtained for the model’s (Equation 1) adjusta-
ble parameters: a , n , , o and inf based on the various er-
ror functions are presented in Table 1. Then, the predictions of 
the fitted model based on the various mentioned error func-
tions were evaluated using the coefficient of determination 
(R2) and F-test ( testF ) values. According to Oforkansi and 
Oduola [7], coefficient of determination (R2) is considered as 
one of the main criteria for selecting the best fit model(s). This 
is because R2 depicts the degree of explained or accounted for, 
the variance between the experimental data and model-
predicted results. In addition to the coefficient of determina-
tion, the acceptability of the goodness of the fitted model was 
based on the F-test value. That is, the model with the F-test 
value less than the F-critical value (Tables A.2 and A.3 in Ap-
pendix) indicates the best-fitted model. The equations for R2 
and F-test are expanded in Equations 9 and 10 respectively. 
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where; 

  exp. = average experimental viscosity 

model = average model predicted viscosity. 

3 FINDINGS FROM THE EVALUATION 

Table 1 presents the values of the model’s adjustable 
parameters obtained based on the different error functions. 
The minimized error function values that established the 
model’s adjustable parameter are presented in Table 2. The 
results obtained indicated that different adjustable 
parameters’ values for the model were established by some of 
the statistical error functions: average, absolute and Chi-
square errors (Table 1). Furthermore, the results indicated that 
the sum of square, mean square, root mean square and 
normalize root mean square error functions established the 
same values for the model’s adjustable parameters. The reason 
for this is attributed to the fact that this error functions simply 
evaluate the squared difference between the experimental data 
and model-predicted results. For the average error function, 
establishing the adjustable parameters of the model required 
using the “To Value Of” option on the SOLVER. This applied 
function on the SOLVER handles the challenges of early 
stopping (converging) of the GRG iteration protocol to drive 
the “Objective Cell” (i.e., the average error) to the targeted 
value. Nevertheless, in some cases, the targeted value may not 
be achieved because when the GRG algorithm establishes the 
local optimal for the function it truncates the iterative protocol 
without getting to the targeted value. Based on the established 
model’s adjustable parameters from the various error 
functions, the predictions of the fitted model were compared 
with the experimental data (Figure 3). In Figure 3, the results 
obtained indicated that the fitted model predictions were close 
to the experimental data, except for the fitted model’s 

prediction from the average error function. The exceptional 
prediction from the model fitted using the average error 

function approach is because some evaluated difference 
between the experimental data and model prediction resulted 
in negative values. This happened to those model predicted 
values that are greater than the experimental data. 
Consequently, these negative values affected the summed 
difference between experimental data and model-predicted 
results. 

   Furthermore, the validity of the various error functions 
used to establish the adjustable parameters in the model was 
evaluated using the coefficient of determination (R2) to 
determine the closeness (goodness of fit) of the fitted model 
predictions to the experimental data. Also, the acceptability of 
the fitted model was evaluated using the F-test value (Ftest); as 
presented in Table 2. The results obtained indicated that 
almost all the error functions have the same R2 of 0.9998 except 
for an average error with R2 of 0.9585. The R2 obtained for 
average error indicated the reason why the fitted model’s 
predictions based on average error were not close to (i.e., align 
with) the experimental data as the fitted model based on other 
error functions did; as depicted in Figure 3. Despite the 
closeness of the fitted models’ prediction as established by the 
R2 obtained, the Ftest value obtained showed that the fitted 
model based on the sum of square, mean square, root-mean-
square and normalized root-mean-square error functions were 
more acceptable than the fitted model based on absolute error 
and Chi-square error functions. This assertion is based on the 
Ftest values obtained, that is, 1.0002, 1.0037 and 1.0004 for the 
sum of square error, absolute error and Chi-square error 
respectively. The acceptability of the fitted model based on the 
sum of square errors was further supported by the fact that, 
the Ftest value, 1.0002, obtained was less than their F-critical 
value of 1.5709 (Tables A.2 and A.3 in Appendix). This implied 
that the fitted model based on average error is rejected 
because its Ftest value, 0.9756 was greater than its F-critical 
value of 0.6365. 

Table 1: Values for the model adjustable parameters 

Error Functions 
Model Adjustable Parameters 

a  n    o  inf  

Average error 2.2122 0.5835 0.1949 19.9711 0.7246 

Absolute error 2.3194 0.5179 0.0525 17.0109 0.6804 

Sum of square 

error 

2.2173 0.5155 0.0512 17.0514 0.6895 

Mean square 

error 

2.2172 0.5155 0.0512 17.0514 0.6895 

Root mean 

square error 

2.2173 0.5155 0.0512 17.0514 0.6895 

Chi-square error 1.9153 0.5200 0.0520 17.2154 0.6690 

Normalize 

RMSE 

2.2172 0.5155 0.0512 17.0514 0.6895 
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Table 2: Minimised error functions value and their respective 
validity evaluation results 

Error Functions 

Error Function 

Values 

Coefficient of 

Determination 

(R2) 

 F-test Value  

( testF ) 

Average error -5.25E-08 0.9585 0.9756 
Absolute error 0.01567 0.9997 1.0037 
Sum of square 
error 

0.27826 0.9998 1.0002 

Mean square 
error 

0.00506 0.9998 1.0002 

Root mean 
square error 

0.07113 0.9998 1.0002 

Chi square error 0.03258 0.9997 1.0004 
Normalize 
RMSE 

0.00432 0.9998 1.0002 

 

 

Fig 3, Comparing various error functions model estimations 

 4 CONCLUSION 

Based on the evaluation results obtained from the 
SOLVER, the following conclusions were drawn: 
i. nonlinear models fitted with the average error function 

would be less fitted with the experimental data when 
compared with models fitted using other error functions; 

ii. fitting nonlinear models to experimental data using the 
average error function would require setting the error 
minimization to the least value possible;  

iii. coefficient of determination (R2) and F-test (Ftest) establish 
the fitted model goodness fit and acceptability than other 
statistical error functions; and 

iv. the sum of square, mean square, root mean square and 
normalize root mean square error functions are good error 
minimization approach to fit nonlinear models and curves 
to experimental data. 
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APPENDIX 

Table A.1: Experiment viscosity- shear rate data from Morrison [6] 

shear 

rate 

viscosity shear 

rate 

viscosity shear 

rate 

viscosity 

(1/s) (poise) (1/s) (poise) (1/s) (poise) 

9.97E-01 1.72E+01 6.40E+02 3.68E+00 1.57E+04 1.30E+00 

1.56E+00 1.71E+01 1.01E+03 3.12E+00 2.02E+04 1.21E+00 

2.48E+00 1.70E+01 1.27E+03 3.06E+00 2.55E+04 1.14E+00 

3.89E+00 1.69E+01 1.61E+03 2.67E+00 4.05E+04 1.09E+00 

6.19E+00 1.67E+01 2.03E+03 2.64E+00 5.03E+04 1.03E+00 

9.89E+00 1.62E+01 2.56E+03 2.28E+00 6.34E+04 9.99E-01 

1.58E+01 1.54E+01 3.23E+03 2.15E+00 7.99E+04 9.73E-01 

2.47E+01 1.40E+01 4.01E+03 2.05E+00 1.27E+05 9.20E-01 

3.93E+01 1.20E+01 4.02E+03 1.94E+00 2.02E+05 8.67E-01 

6.26E+01 9.86E+00 4.99E+03 1.88E+00 3.17E+05 8.50E-01 

9.96E+01 7.98E+00 6.30E+03 1.67E+00 5.04E+05 7.97E-01 

1.58E+02 6.54E+00 8.08E+03 1.60E+00 8.14E+05 7.81E-01 

2.49E+02 5.40E+00 1.00E+04 1.47E+00 1.27E+06 7.27E-01 

4.00E+02 4.39E+00 1.27E+04 1.40E+00 1.99E+06 7.46E-01 

6.40E+02 3.68E+00 1.57E+04 1.30E+00 3.17E+06 7.30E-01 

1.58E+02 6.54E+00 2.02E+04 1.21E+00 1.27E+06 7.27E-01 

2.49E+02 5.40E+00 1.00E+04 1.47E+00 1.99E+06 7.46E-01 

4.00E+02 4.39E+00 1.27E+04 1.40E+00 3.17E+06 7.30E-01 
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           Table A.2: Experimental and model predicted F-Test Analysis 

 Average Error Absolute Error Sum of Square Error (SSE) Mean Square Error (MSE) 

  Experimental Predicted Experimental Predicted Experimental Predicted Experimental Predicted 

Mean 4.5664 4.3784 4.5664 4.5464 4.5664 4.5664 4.5664 4.5664 

Variance 29.4970 30.2334 29.4970 29.3891 29.4970 29.4919 29.4970 29.4918 

Observations 55 55 55 55 55 55 55 55 

df 54 54 54 54 54 54 54 54 

F 0.9756 
 

1.0037  1.0002  1.0002  

P(F<=f) one-tail 0.4640 
 

0.4947  0.4997  0.4997  

F Critical one-tail 0.6365 
 

1.5709  1.5709  1.5709  

 
          Table A.3: Experimental and model predicted F-Test Analysis continue 

 

Root Mean Square Error 

(RMSE) Chi-Square (X2) 

Normalize Root Mean Square 

Error (NRMSE) 

  Experimental Predicted Experimental Predicted Experimental Predicted 

Mean 4.5664 4.5664 4.5664 4.5693 4.5664 4.5664 

Variance 29.4970 29.4918 29.4970 29.4839 29.4970 29.4918 

Observations 55 55 55 55 55 55 

df 54 54 54 54 54 54 

F 1.0002 
 

1.0004  1.0002  

P(F<=f) one-tail 0.4997 
 

0.4994  0.4997  

F Critical one-tail 1.5709 
 

1.5709  1.5709  
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